110 research outputs found

    Particle production in the outflow of a midlatitude storm

    Get PDF
    The concentrations of atmospheric gases and condensation nuclei (CN) or aerosol in the outflow of a storm were measured aboard a NASA DC-8 aircraft, as described in a companion paper [Twohy et al., 2002]. The data are used here to study the production of the aerosol. Major fluctuations in CN concentration are observed, in correlation with gas-phase species, but these are shown to arise as the result of the mixing of two distinct air masses. It is deduced that the CN originated in a storm outflow air mass and that its concentration before mixing was approximately uniform over a flight distance of about 200 km. The formation of the aerosol by nucleation followed by growth and coagulation is analyzed assuming that it consists of water and sulphuric acid produced locally by the oxidation of SO2. The analysis uses analytic models, and it is concluded that a 5 min burst of nucleation was followed by growth and coagulation over a period of about 5 hours. Both the mass and number concentrations of the observed aerosol can be reproduced by this analysis within a timescale consistent with that of the storm. The final number concentration is very insensitive to the initial SO2 concentration

    Contactless 2-dimensional laser sensor for 3-dimensional wire position and tension measurements

    Full text link
    We have developed a contact-free 2-dimensional laser sensor with which the position of wires can be measured in 3 dimensions with an accuracy of better than 10 micrometer and with which the tension of the wires can be determined with an accuracy of 0.04 N. These measurements can be made from a distance of 15 cm. The sensor consists of commercially available laser pointers, lenses, color filters and photodiodes. In our application we have used this laser sensor together with an automated 3 dimensional coordinate table. For a single position measurement, the laser sensor is moved by the 3-dimensional coordinate table in a plane and determines the coordinates at which the wires intersect with this plane. The position of the plane itself (the third coordinate) is given by the third axis of the measurement table which is perpendicular to this plane. The control and readout of the table and the readout of the laser sensor were realized with LabVIEW. The precision of the position measurement in the plane was determined with wires of 0.2 mm and 0.3 mm diameter. We use the sensor for the quality assurance of the wire electrode modules for the KATRIN neutrino mass experiment. We expect that the precision is at least comparable or better if the wires are thinner. Such a device could be well suited for the measurement of wire chamber geometries even with more than one wire layer.Comment: 15 pages, 8 figure

    Precision high voltage divider for the KATRIN experiment

    Full text link
    The Karlsruhe Tritium Neutrino Experiment (KATRIN) aims to determine the absolute mass of the electron antineutrino from a precise measurement of the tritium beta-spectrum near its endpoint at 18.6 keV with a sensitivity of 0.2 eV. KATRIN uses an electrostatic retardation spectrometer of MAC-E filter type for which it is crucial to monitor high voltages of up to 35 kV with a precision and long-term stability at the ppm level. Since devices capable of this precision are not commercially available, a new high voltage divider for direct voltages of up to 35 kV has been designed, following the new concept of the standard divider for direct voltages of up to 100 kV developed at the Physikalisch-Technische Bundesanstalt (PTB). The electrical and mechanical design of the divider, the screening procedure for the selection of the precision resistors, and the results of the investigation and calibration at PTB are reported here. During the latter, uncertainties at the low ppm level have been deduced for the new divider, thus qualifying it for the precision measurements of the KATRIN experiment.Comment: 22 pages, 12 figure

    Low Energy Neutrino Physics after SNO and KamLAND

    Full text link
    In the recent years important discoveries in the field of low energy neutrino physics (Eν_\nu in the ≈\approx MeV range) have been achieved. Results of the solar neutrino experiment SNO show clearly flavor transitions from νe\nu_e to νμ,τ\nu_{\mu,\tau}. In addition, the long standing solar neutrino problem is basically solved. With KamLAND, an experiment measuring neutrinos emitted from nuclear reactors at large distances, evidence for neutrino oscillations has been found. The values for the oscillation parameters, amplitude and phase, have been restricted. In this paper the potential of future projects in low energy neutrino physics is discussed. This encompasses future solar and reactor experiments as well as the direct search for neutrino masses. Finally the potential of a large liquid scintillator detector in an underground laboratory for supernova neutrino detection, solar neutrino detection, and the search for proton decay p→K+νp \to K^+ \nu is discussed.Comment: Invited brief review, World Scientific Publishing Compan

    Final Results from phase II of the Mainz Neutrino Mass Search in Tritium β\beta Decay

    Full text link
    The paper reports on the improved Mainz experiment on tritum β\beta spectroscopy which yields a 10 times' higher signal to background ratio than before. The main experimental effects and systematic uncertainties have been investigated in side experiments and possible error sources have been eliminated. Extensive data taking took place in the years 1997 to 2001. A residual analysis of the data sets yields for the square of the electron antineutrino mass the final result of m2(νe)=(−0.6±2.2stat±2.1syst)m^2(\nu_e)=(-0.6 \pm 2.2_{\rm{stat}} \pm 2.1_{\rm{syst}}) eV2^2/c4^4. We derive an upper limit of m(νe)≤2.3m(\nu_e)\leq 2.3 eV/c2^2 at 95% confidence level for the mass itself.Comment: 22 pages, 22 figures submitted to EPJ

    First detection and energy measurement of recoil ions following beta decay in a Penning trap with the WITCH experiment

    Full text link
    The WITCH experiment (Weak Interaction Trap for CHarged particles) will search for exotic interactions by investigating the beta-neutrino angular correlation via the measurement of the recoil energy spectrum after beta decay. As a first step the recoil ions from the beta-minus decay of 124In stored in a Penning trap have been detected. The evidence for the detection of recoil ions is shown and the properties of the ion cloud that forms the radioactive source for the experiment in the Penning trap are presented.Comment: 9 pages, 6 figures (9 figure files), submitted to European Physical Journal

    Neutrino Mass and Oscillation

    Get PDF
    The question of neutrino mass is one of the major riddles in particle physics. Recently, strong evidence that neutrinos have nonzero masses has been found. While tiny, these masses could be large enough to contribute significantly to the mass density of the universe. The evidence for nonvanishing neutrino masses is based on the apparent observation of neutrino oscillation -- the transformation of a neutrino of one type or "flavor" into one of another. We explain the physics of neutrino oscillation, and review and weigh the evidence that it actually occurs in nature. We also discuss the constraints on neutrino mass from cosmology and from experiments with negative results. After presenting illustrative neutrino mass spectra suggested by the present data, we consider how near- and far-future experiments can further illuminate the nature of neutrinos and their masses.Comment: 43 pages, 8 figures, to appear in the Annual Review of Nuclear and Particle Science, Vol. 49 (1999
    • …
    corecore